МИНИСТЕРСТВО ПРОСВЕЩЕНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

СОГЛАСОВАНО решением Педагогического совета протокол № 01 от « 28 » августа 2025г.

УТВЕРЖДЕНО
приказом № 104 боль 202 хг.
И.о. тырымгора МАОУ СОШ № 2

РАБОЧАЯ ПРОГРАММА

(ID 8252582)

учебного предмета «Химия. Базовый уровень»

для обучающихся 10 – 11 классов

І. ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

Программа по химии на уровне среднего общего образования разработана на основе Федерального закона от 29.12.2012 № 273-ФЗ «Об образовании в Российской Федерации», требований к результатам освоения федеральной образовательной программы среднего общего образования ПОФ) COO), представленных В Федеральном государственном образовательном стандарте СОО, с учётом Концепции преподавания учебного предмета «Химия» в образовательных организациях Российской Федерации, реализующих основные образовательные программы, основных положений «Стратегии развития воспитания в Российской Федерации на период до 2025 года» (Распоряжение Правительства РФ от 29.05. 2015 № 996 - p.).

Основу подходов к разработке программы по химии, к определению общей стратегии обучения, воспитания и развития обучающихся средствами учебного предмета «Химия» для 10–11 классов на базовом уровне составили концептуальные положения ФГОС СОО о взаимообусловленности целей, содержания, результатов обучения и требований к уровню подготовки выпускников.

Химическое образование, получаемое выпускниками общеобразовательной организации, является неотъемлемой частью образованности. Оно служит завершающим этапом реализации соответствующем ему базовом уровне ключевых ценностей, присущих целостной системе химического образования. Эти ценности касаются познания законов природы, формирования мировоззрения и общей культуры также экологически обоснованного отношения к своему человека, природной среде. Реализуется химическое образование И обучающихся на уровне среднего общего образования средствами учебного предмета «Химия», содержание и построение которого определены в программе по химии с учётом специфики науки химии, её значения в познании природы и в материальной жизни общества, а также с учётом общих целей и принципов, характеризующих современное состояние системы среднего общего образования в Российской Федерации.

Химия как элемент системы естественных наук играет особую роль в современной цивилизации, в создании новой базы материальной культуры. Она вносит свой вклад в формирование рационального научного мышления, в создание целостного представления об окружающем мире как о единстве природы и человека, которое формируется в химии на основе понимания вещественного состава окружающего мира, осознания взаимосвязи между строением веществ, их свойствами и возможными областями применения.

Тесно взаимодействуя с другими естественными науками, химия стала неотъемлемой частью мировой культуры, необходимым условием успешного труда и жизни каждого члена общества. Современная химия как наука созидательная, как наука высоких технологий направлена на решение глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой, экологической безопасности и охраны здоровья.

В соответствии с общими целями и принципами среднего общего образования содержание предмета «Химия» (10–11 классы, базовый уровень изучения) ориентировано преимущественно на общекультурную подготовку обучающихся, необходимую ИМ ДЛЯ выработки мировоззренческих ориентиров, успешного включения В жизнь социума, продолжения образования в различных областях, не связанных непосредственно с химией.

Составляющими предмета «Химия» являются базовые курсы — «Органическая химия» и «Общая и неорганическая химия», основным компонентом содержания которых являются основы базовой науки: система знаний по неорганической химии (с включением знаний из общей химии) и органической химии. Формирование данной системы знаний при изучении предмета обеспечивает возможность рассмотрения всего многообразия веществ на основе общих понятий, законов и теорий химии.

Структура содержания курсов – «Органическая химия» и «Общая и неорганическая химия» сформирована в программе по химии на основе системного подхода к изучению учебного материала и обусловлена обоснованным развитием знаний на исторически определённых теоретических уровнях. Так, в курсе органической химии вещества рассматриваются на уровне классической теории строения органических соединений, также на уровне стереохимических И электронных представлений о строении веществ. Сведения об изучаемых в курсе веществах даются в развитии – от углеводородов до сложных биологически активных соединений. В курсе органической химии получают развитие сформированные на уровне основного общего образования первоначальные представления о химической связи, классификационных признаках веществ, зависимости свойств веществ от их строения, о химической реакции.

Под новым углом зрения в предмете «Химия» базового уровня рассматривается изученный на уровне основного общего образования теоретический материал и фактологические сведения о веществах и химической реакции. Так, в частности, в курсе «Общая и неорганическая химия» обучающимся предоставляется возможность осознать значение периодического закона с общетеоретических и методологических позиций,

глубже понять историческое изменение функций этого закона – от обобщающей до объясняющей и прогнозирующей.

Единая система знаний о важнейших веществах, их составе, строении, свойствах и применении, а также о химических реакциях, их сущности и закономерностях протекания дополняется в курсах 10 и 11 классов элементами содержания, имеющими культурологический и прикладной характер. Эти знания способствуют пониманию взаимосвязи химии с другими науками, раскрывают её роль в познавательной и практической деятельности человека, способствуют воспитанию уважения к процессу творчества в области теории и практических приложений химии, помогают выпускнику ориентироваться в общественно и личностно проблемах, связанных с химией, критически осмысливать информацию и применять её для пополнения знаний, решения интеллектуальных и экспериментальных исследовательских задач. В целом содержание учебного «Химия» изучения предмета данного уровня ориентировано формирование у обучающихся мировоззренческой основы для понимания философских идей, таких как: материальное единство неорганического и органического мира, обусловленность свойств веществ их составом и строением, познаваемость природных явлений путём эксперимента противоречий между новыми фактами решения И теоретическими предпосылками, осознание роли химии в решении экологических проблем, а также проблем сбережения энергетических ресурсов, сырья, создания новых технологий и материалов.

В плане решения задач воспитания, развития и социализации обучающихся принятые программой по химии подходы к определению содержания И построения предмета предусматривают формирование учебных действий, имеющих базовое универсальных значение различных видов деятельности: решения проблем, поиска, анализа и обработки информации, необходимых для приобретения опыта практической и исследовательской деятельности, занимающей важное место в познании химии.

В практике преподавания химии как на уровне основного общего образования, так и на уровне среднего общего образования, при определении содержательной характеристики целей изучения предмета направлением первостепенной значимости традиционно признаётся формирование основ химической науки как области современного естествознания, практической деятельности человека и как одного из компонентов мировой культуры. С методической точки зрения такой подход к определению целей изучения предмета является вполне оправданным.

Согласно данной точке зрения главными целями изучения предмета «Химия» на базовом уровне (10-11 кл.) являются:

- формирование системы химических знаний как важнейшей составляющей естественно-научной картины мира, в основе которой лежат ключевые понятия, фундаментальные законы и теории химии, освоение языка науки, усвоение и понимание сущности доступных обобщений мировоззренческого характера, ознакомление с историей их развития и становления;
- формирование и развитие представлений о научных методах познания веществ и химических реакций, необходимых для приобретения умений ориентироваться в мире веществ и химических явлений, имеющих место в природе, в практической и повседневной жизни;
- развитие умений и способов деятельности, связанных с наблюдением и объяснением химического эксперимента, соблюдением правил безопасного обращения с веществами.

Наряду с этим, содержательная характеристика целей и задач изучения предмета в программе по химии уточнена и скорректирована в соответствии с новыми приоритетами в системе среднего общего образования. Сегодня в большей степени отдаётся преподавании химии В практической компоненте содержания обучения, ориентированной подготовку выпускника общеобразовательной организации, владеющего не набором знаний, а функциональной грамотностью, то есть способами и умениями активного получения знаний и применения их в реальной жизни для решения практических задач.

В связи с этим при изучении предмета «Химия» доминирующее значение приобретают такие цели и задачи, как:

адаптация обучающихся к условиям динамично развивающегося мира, формирование интеллектуально развитой личности, готовой к самообразованию, сотрудничеству, самостоятельному принятию грамотных решений в конкретных жизненных ситуациях, связанных с веществами и их применением;

формирование у обучающихся ключевых навыков (ключевых компетенций), имеющих универсальное значение для различных видов деятельности: решения проблем, поиска, анализа и обработки информации, необходимых для приобретения опыта деятельности, которая занимает важное место в познании химии, а также для оценки с позиций экологической безопасности характера влияния веществ и химических процессов на организм человека и природную среду;

развитие познавательных интересов, интеллектуальных и творческих способностей обучающихся: способности самостоятельно приобретать новые знания по химии в соответствии с жизненными потребностями, использовать современные информационные технологии для поиска и анализа учебной и научно-популярной информации химического содержания;

формирование и развитие у обучающихся ассоциативного и логического мышления, наблюдательности, собранности, аккуратности, которые особенно необходимы, в частности, при планировании и проведении химического эксперимента;

воспитание у обучающихся убеждённости в гуманистической направленности химии, её важной роли в решении глобальных проблем рационального природопользования, пополнения энергетических ресурсов и сохранения природного равновесия, осознания необходимости бережного отношения к природе и своему здоровью, а также приобретения опыта использования полученных знаний для принятия грамотных решений в ситуациях, связанных с химическими явлениями.

В учебном плане среднего общего образования предмет «Химия» базового уровня входит в состав предметной области «Естественно-научные предметы».

Общее число часов, отведённых для изучения химии, на базовом уровне среднего общего образования, составляет 68 часов: в 10 классе — 34 часа (1 час в неделю), в 11 классе — 34 часа (1 час в неделю).

II. СОДЕРЖАНИЕ ОБУЧЕНИЯ

10 КЛАСС

ОРГАНИЧЕСКАЯ ХИМИЯ

Теоретические основы органической химии

Предмет органической химии: её возникновение, развитие и значение в получении новых веществ и материалов. Теория строения органических соединений А. М. Бутлерова, её основные положения. Структурные формулы органических веществ. Гомология, изомерия. Химическая связь в органических соединениях – одинарные и кратные связи.

Представление о классификации органических веществ. Номенклатура органических соединений (систематическая) и тривиальные названия важнейших представителей классов органических веществ.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами органических веществ и материалами на их основе, моделирование молекул органических веществ, наблюдение и описание демонстрационных опытов по превращению органических веществ при нагревании (плавление, обугливание и горение).

Углеводороды

Алканы: состав и строение, гомологический ряд. Метан и этан – простейшие представители алканов: физические и химические свойства (реакции замещения и горения), нахождение в природе, получение и применение.

Алкены: состав и строение, гомологический ряд. Этилен и пропилен – простейшие представители алкенов: физические и химические свойства (реакции гидрирования, галогенирования, гидратации, окисления и полимеризации), получение и применение.

Алкадиены: бутадиен-1,3 и метилбутадиен-1,3: строение, важнейшие химические свойства (реакция полимеризации). Получение синтетического каучука и резины.

Алкины: состав и особенности строения, гомологический ряд. Ацетилен – простейший представитель алкинов: состав, строение, физические и химические свойства (реакции гидрирования, галогенирования, гидратации, горения), получение и применение.

Арены. Бензол: состав, строение, физические и химические свойства (реакции галогенирования и нитрования), получение и применение. Толуол: состав, строение, физические и химические свойства (реакции галогенирования и нитрования), получение и применение. Токсичность

аренов. Генетическая связь между углеводородами, принадлежащими к различным классам.

Природные источники углеводородов. Природный газ и попутные нефтяные газы. Нефть и её происхождение. Способы переработки нефти: перегонка, крекинг (термический, каталитический), пиролиз. Продукты переработки нефти, их применение в промышленности и в быту. Каменный уголь и продукты его переработки.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами пластмасс, каучуков и резины, коллекции «Нефть» и «Уголь», моделирование молекул углеводородов и галогенопроизводных, проведение <u>практической работы</u>: получение этилена и изучение его свойств.

Расчётные задачи.

Вычисления по уравнению химической реакции (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции).

Кислородсодержащие органические соединения

Предельные одноатомные спирты. Метанол и этанол: строение, физические и химические свойства (реакции с активными металлами, галогеноводородами, горение), применение. Водородные связи между молекулами спиртов. Действие метанола и этанола на организм человека.

Многоатомные спирты. Этиленгликоль и глицерин: строение, физические и химические свойства (взаимодействие со щелочными металлами, качественная реакция на многоатомные спирты). Действие на организм человека. Применение глицерина и этиленгликоля.

Фенол: строение молекулы, физические и химические свойства. Токсичность фенола. Применение фенола.

Альдегиды и *кетоны*. Формальдегид, ацетальдегид: строение, физические и химические свойства (реакции окисления и восстановления, качественные реакции), получение и применение.

Одноосновные предельные карбоновые кислоты. Муравьиная и уксусная кислоты: строение, физические и химические свойства (свойства, общие для класса кислот, реакция этерификации), получение и применение. Стеариновая и олеиновая кислоты как представители высших карбоновых кислот. Мыла как соли высших карбоновых кислот, их моющее действие.

Сложные эфиры как производные карбоновых кислот. Гидролиз сложных эфиров. Жиры. Гидролиз жиров. Применение жиров. Биологическая роль жиров.

Углеводы: состав, классификация углеводов (моно-, ди- и полисахариды). Глюкоза — простейший моносахарид: особенности строения молекулы, физические и химические свойства (взаимодействие с гидроксидом меди(II), окисление аммиачным раствором оксида серебра(I), восстановление, брожение глюкозы), нахождение в природе, применение, биологическая роль. Фотосинтез. Фруктоза как изомер глюкозы.

Крахмал и целлюлоза как природные полимеры. Строение крахмала и целлюлозы. Физические и химические свойства крахмала (гидролиз, качественная реакция с иодом).

Экспериментальные методы изучения веществ и их превращений: проведение, наблюдение и описание демонстрационных опытов: горение спиртов, качественные реакции одноатомных спиртов (окисление этанола оксидом меди(II)), многоатомных спиртов (взаимодействие глицерина с гидроксидом меди(II)), альдегидов (окисление аммиачным раствором оксида серебра(I) и гидроксидом меди(II), взаимодействие крахмала с иодом), проведение практической работы: свойства раствора уксусной кислоты.

Расчётные задачи.

Вычисления по уравнению химической реакции (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции).

Азотсодержащие органические соединения.

Аминокислоты как амфотерные органические соединения. Физические и химические свойства аминокислот (на примере глицина). Биологическое значение аминокислот. Пептиды.

Белки как природные высокомолекулярные соединения. Первичная, вторичная и третичная структура белков. Химические свойства белков: гидролиз, денатурация, качественные реакции на белки.

Экспериментальные методы изучения веществ и их превращений: наблюдение и описание демонстрационных опытов: денатурация белков при нагревании, цветные реакции белков.

Высокомолекулярные соединения

Основные понятия химии высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации, средняя молекулярная масса. Основные методы синтеза высокомолекулярных соединений — полимеризация и поликонденсация.

Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами природных и искусственных волокон, пластмасс, каучуков.

Межпредметные связи.

Реализация межпредметных связей при изучении органической химии в 10 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла.

Общие естественно-научные понятия: явление, научный факт, гипотеза, закон, теория, анализ, синтез, классификация, периодичность, наблюдение, измерение, эксперимент, моделирование.

Физика: материя, энергия, масса, атом, электрон, молекула, энергетический уровень, вещество, тело, объём, агрегатное состояние вещества, физические величины и единицы их измерения.

Биология: клетка, организм, биосфера, обмен веществ в организме, фотосинтез, биологически активные вещества (белки, углеводы, жиры, ферменты).

География: минералы, горные породы, полезные ископаемые, топливо, ресурсы.

Технология: пищевые продукты, основы рационального питания, моющие средства, лекарственные и косметические препараты, материалы из искусственных и синтетических волокон.

11 КЛАСС

ОБЩАЯ И НЕОРГАНИЧЕСКАЯ ХИМИЯ

Теоретические основы химии

Химический элемент. Атом. Ядро атома, изотопы. Электронная оболочка. Энергетические уровни, подуровни. Атомные орбитали, s-, p-, d-элементы. Особенности распределения электронов по орбиталям в атомах элементов первых четырёх периодов. Электронная конфигурация атомов.

Периодический закон и Периодическая система химических элементов Д. И. Менделеева. Связь периодического закона и Периодической системы химических элементов Д. И. Менделеева с современной теорией строения атомов. Закономерности изменения свойств химических элементов и образуемых ими простых и сложных веществ по группам и периодам. Значение периодического закона в развитии науки.

Строение вещества. Химическая связь. Виды химической связи (ковалентная неполярная и полярная, ионная, металлическая). Механизмы образования ковалентной химической связи (обменный и донорно-акцепторный). Водородная связь. Валентность. Электроотрицательность. Степень окисления. Ионы: катионы и анионы.

Вещества молекулярного и немолекулярного строения. Закон постоянства состава вещества. Типы кристаллических решёток. Зависимость свойства веществ от типа кристаллической решётки.

Понятие о дисперсных системах. Истинные и коллоидные растворы. Массовая доля вещества в растворе.

Классификация неорганических соединений. Номенклатура неорганических веществ. Генетическая связь неорганических веществ, принадлежащих к различным классам.

Химическая реакция. Классификация химических реакций в неорганической и органической химии. Закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях.

Скорость реакции, её зависимость от различных факторов. Обратимые реакции. Химическое равновесие. Факторы, влияющие на состояние химического равновесия. Принцип Ле Шателье.

Электролитическая диссоциация. Сильные и слабые электролиты. Среда водных растворов веществ: кислая, нейтральная, щелочная.

Окислительно-восстановительные реакции.

Экспериментальные методы изучения веществ и их превращений: демонстрация таблиц «Периодическая система химических элементов Д. И. Менделеева», изучение моделей кристаллических решёток, наблюдение и описание демонстрационных и лабораторных опытов (разложение пероксида водорода в присутствии катализатора, определение среды растворов веществ с помощью универсального индикатора, реакции ионного обмена), проведение практической работы «Влияние различных факторов на скорость химической реакции».

Расчётные задачи.

Расчёты по уравнениям химических реакций, в том числе термохимические расчёты, расчёты с использованием понятия «массовая доля вещества».

Неорганическая химия

Неметаллы. Положение неметаллов в Периодической системе химических элементов Д. И. Менделеева и особенности строения атомов. Физические свойства неметаллов. Аллотропия неметаллов (на примере кислорода, серы, фосфора и углерода).

Химические свойства важнейших неметаллов (галогенов, серы, азота, фосфора, углерода и кремния) и их соединений (оксидов, кислородсодержащих кислот, водородных соединений).

Применение важнейших неметаллов и их соединений.

Металлы. Положение металлов в Периодической системе химических элементов Д. И. Менделеева. Особенности строения электронных оболочек атомов металлов. Общие физические свойства металлов. Сплавы металлов. Электрохимический ряд напряжений металлов.

Химические свойства важнейших металлов (натрий, калий, кальций, магний, алюминий, цинк, хром, железо, медь) и их соединений.

Общие способы получения металлов. Применение металлов в быту и технике.

Экспериментальные методы изучения веществ и их превращений: изучение коллекции «Металлы и сплавы», образцов неметаллов, решение экспериментальных задач, наблюдение и описание демонстрационных и лабораторных опытов (взаимодействие гидроксида алюминия с растворами кислот и щелочей, качественные реакции на катионы металлов).

Расчётные задачи.

Расчёты массы вещества или объёма газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ, расчёты массы (объёма, количества вещества) продуктов реакции, если одно из веществ имеет примеси.

Химия и жизнь

Роль химии в обеспечении экологической, энергетической и пищевой безопасности, развитии медицины. Понятие о научных методах познания веществ и химических реакций.

Представления об общих научных принципах промышленного получения важнейших веществ.

Человек в мире веществ и материалов: важнейшие строительные материалы, конструкционные материалы, краски, стекло, керамика, материалы для электроники, наноматериалы, органические и минеральные удобрения.

Химия и здоровье человека: правила использования лекарственных препаратов, правила безопасного использования препаратов бытовой химии в повседневной жизни.

Межпредметные связи.

Реализация межпредметных связей при изучении общей и неорганической химии в 11 классе осуществляется через использование как общих естественно-научных понятий, так и понятий, являющихся системными для отдельных предметов естественно-научного цикла.

Общие естественно-научные понятия: научный факт, гипотеза, закон, теория, анализ, синтез, классификация, периодичность, наблюдение, эксперимент, моделирование, измерение, явление.

Физика: материя, энергия, масса, атом, электрон, протон, нейтрон, ион, изотоп, радиоактивность, молекула, энергетический уровень, вещество, тело, объём, агрегатное состояние вещества, физические величины и единицы их измерения, скорость.

Биология: клетка, организм, экосистема, биосфера, макро- и микроэлементы, витамины, обмен веществ в организме.

География: минералы, горные породы, полезные ископаемые, топливо, ресурсы.

Технология: химическая промышленность, металлургия, производство строительных материалов, сельскохозяйственное производство, пищевая промышленность, фармацевтическая промышленность, производство косметических препаратов, производство конструкционных материалов, электронная промышленность, нанотехнологии.

III.ПЛАНИРУЕМЫЕ РЕЗУЛЬТАТЫ ОСВОЕНИЯ ПРОГРАММЫ ПО ХИМИИ НА БАЗОВОМ УРОВНЕ СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ

ЛИЧНОСТНЫЕ РЕЗУЛЬТАТЫ

ФГОС СОО устанавливает требования к результатам освоения обучающимися программ среднего общего образования (личностным, метапредметным и предметным). Научно-методической основой для разработки планируемых результатов освоения программ среднего общего образования является системно-деятельностный подход.

В соответствии с системно-деятельностным подходом в структуре личностных результатов освоения предмета «Химия» на уровне среднего общего образования выделены следующие составляющие:

осознание обучающимися российской гражданской идентичности – готовности к саморазвитию, самостоятельности и самоопределению;

наличие мотивации к обучению;

целенаправленное развитие внутренних убеждений личности на основе ключевых ценностей и исторических традиций базовой науки химии;

готовность и способность обучающихся руководствоваться в своей деятельности ценностно-смысловыми установками, присущими целостной системе химического образования;

наличие правосознания экологической культуры и способности ставить цели и строить жизненные планы.

Личностные результаты освоения предмета «Химия» достигаются в единстве учебной и воспитательной деятельности в соответствии с гуманистическими, социокультурными, духовно-нравственными ценностями и идеалами российского гражданского общества, принятыми в обществе нормами и правилами поведения, способствующими процессам самопознания, саморазвития и нравственного становления личности обучающихся.

Личностные результаты освоения предмета «Химия» отражают сформированность опыта познавательной и практической деятельности обучающихся по реализации принятых в обществе ценностей, в том числе в части:

1) гражданского воспитания:

осознания обучающимися своих конституционных прав и обязанностей, уважения к закону и правопорядку;

представления о социальных нормах и правилах межличностных отношений в коллективе;

готовности к совместной творческой деятельности при создании учебных проектов, решении учебных и познавательных задач, выполнении химических экспериментов;

способности понимать и принимать мотивы, намерения, логику и аргументы других при анализе различных видов учебной деятельности;

2) патриотического воспитания:

ценностного отношения к историческому и научному наследию отечественной химии;

уважения к процессу творчества в области теории и практического применения химии, осознания того, что достижения науки есть результат длительных наблюдений, кропотливых экспериментальных поисков, постоянного труда учёных и практиков;

интереса и познавательных мотивов в получении и последующем анализе информации о передовых достижениях современной отечественной химии;

3) духовно-нравственного воспитания:

нравственного сознания, этического поведения;

способности оценивать ситуации, связанные с химическими явлениями, и принимать осознанные решения, ориентируясь на морально-нравственные нормы и ценности;

готовности оценивать своё поведение и поступки своих товарищей с позиций нравственных и правовых норм и осознание последствий этих поступков;

4) формирования культуры здоровья:

понимания ценностей здорового и безопасного образа жизни, необходимости ответственного отношения к собственному физическому и психическому здоровью;

соблюдения правил безопасного обращения с веществами в быту, повседневной жизни и в трудовой деятельности;

понимания ценности правил индивидуального и коллективного безопасного поведения в ситуациях, угрожающих здоровью и жизни людей;

осознания последствий и неприятия вредных привычек (употребления алкоголя, наркотиков, курения);

5) трудового воспитания:

коммуникативной компетентности в учебно-исследовательской деятельности, общественно полезной, творческой и других видах деятельности;

установки на активное участие в решении практических задач социальной направленности (в рамках своего класса, школы);

интереса к практическому изучению профессий различного рода, в том числе на основе применения предметных знаний по химии;

уважения к труду, людям труда и результатам трудовой деятельности;

готовности к осознанному выбору индивидуальной траектории образования, будущей профессии и реализации собственных жизненных планов с учётом личностных интересов, способностей к химии, интересов и потребностей общества;

6) экологического воспитания:

экологически целесообразного отношения к природе, как источнику существования жизни на Земле;

понимания глобального характера экологических проблем, влияния экономических процессов на состояние природной и социальной среды;

осознания необходимости использования достижений химии для решения вопросов рационального природопользования;

активного неприятия действий, приносящих вред окружающей природной среде, умения прогнозировать неблагоприятные экологические последствия предпринимаемых действий и предотвращать их;

наличия развитого экологического мышления, экологической культуры, опыта деятельности экологической направленности, умения руководствоваться ими в познавательной, коммуникативной и социальной практике, способности и умения активно противостоять идеологии хемофобии;

7) ценности научного познания:

сформированности мировоззрения, соответствующего современному уровню развития науки и общественной практики;

понимания специфики химии как науки, осознания её роли в формировании рационального научного мышления, создании целостного представления об окружающем мире как о единстве природы и человека, в познании природных закономерностей и решении проблем сохранения природного равновесия;

убеждённости в особой значимости химии для современной цивилизации: в её гуманистической направленности и важной роли в создании новой базы материальной культуры, решении глобальных проблем устойчивого развития человечества — сырьевой, энергетической, пищевой и экологической безопасности, в развитии медицины, обеспечении условий успешного труда и экологически комфортной жизни каждого члена общества;

естественно-научной грамотности: понимания сущности методов познания, используемых в естественных науках, способности использовать

получаемые знания для анализа и объяснения явлений окружающего мира и происходящих в нём изменений, умения делать обоснованные заключения на основе научных фактов и имеющихся данных с целью получения достоверных выводов;

способности самостоятельно использовать химические знания для решения проблем в реальных жизненных ситуациях;

интереса к познанию и исследовательской деятельности;

готовности и способности к непрерывному образованию и самообразованию, к активному получению новых знаний по химии в соответствии с жизненными потребностями;

интереса к особенностям труда в различных сферах профессиональной деятельности.

МЕТАПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

Метапредметные результаты освоения учебного предмета «Химия» на уровне среднего общего образования включают:

значимые для формирования мировоззрения обучающихся междисциплинарные (межпредметные) общенаучные понятия, отражающие целостность научной картины мира и специфику методов познания, используемых в естественных науках (материя, вещество, энергия, явление, процесс, система, научный факт, принцип, гипотеза, закономерность, закон, теория, исследование, наблюдение, измерение, эксперимент и другие);

универсальные учебные действия (познавательные, коммуникативные, регулятивные), обеспечивающие формирование функциональной грамотности и социальной компетенции обучающихся;

способность обучающихся использовать освоенные междисциплинарные, мировоззренческие знания и универсальные учебные действия в познавательной и социальной практике.

Метапредметные результаты отражают овладение универсальными учебными познавательными, коммуникативными и регулятивными действиями.

Овладение универсальными учебными познавательными действиями:

1) базовые логические действия:

самостоятельно формулировать и актуализировать проблему, всесторонне её рассматривать;

определять цели деятельности, задавая параметры и критерии их достижения, соотносить результаты деятельности с поставленными целями;

использовать при освоении знаний приёмы логического мышления – выделять характерные признаки понятий и устанавливать их взаимосвязь,

использовать соответствующие понятия для объяснения отдельных фактов и явлений;

выбирать основания и критерии для классификации веществ и химических реакций;

устанавливать причинно-следственные связи между изучаемыми явлениями;

строить логические рассуждения (индуктивные, дедуктивные, по аналогии), выявлять закономерности и противоречия в рассматриваемых явлениях, формулировать выводы и заключения;

применять в процессе познания, используемые в химии символические (знаковые) модели, преобразовывать модельные представления — химический знак (символ) элемента, химическая формула, уравнение химической реакции — при решении учебных познавательных и практических задач, применять названные модельные представления для выявления характерных признаков изучаемых веществ и химических реакций.

2) базовые исследовательские действия:

владеть основами методов научного познания веществ и химических реакций;

формулировать цели и задачи исследования, использовать поставленные и самостоятельно сформулированные вопросы в качестве инструмента познания и основы для формирования гипотезы по проверке правильности высказываемых суждений;

владеть навыками самостоятельного планирования и проведения ученических экспериментов, совершенствовать умения наблюдать за ходом процесса, самостоятельно прогнозировать его результат, формулировать обобщения и выводы относительно достоверности результатов исследования, составлять обоснованный отчёт о проделанной работе;

приобретать опыт ученической исследовательской и проектной деятельности, проявлять способность и готовность к самостоятельному поиску методов решения практических задач, применению различных методов познания.

3) работа с информацией:

ориентироваться в различных источниках информации (научнопопулярная литература химического содержания, справочные пособия, ресурсы Интернета), анализировать информацию различных видов и форм представления, критически оценивать её достоверность и непротиворечивость; формулировать запросы и применять различные методы при поиске и отборе информации, необходимой для выполнения учебных задач определённого типа;

приобретать опыт использования информационно-коммуникативных технологий и различных поисковых систем;

самостоятельно выбирать оптимальную форму представления информации (схемы, графики, диаграммы, таблицы, рисунки и другие);

использовать научный язык в качестве средства при работе с химической информацией: применять межпредметные (физические и математические) знаки и символы, формулы, аббревиатуры, номенклатуру;

использовать и преобразовывать знаково-символические средства наглядности.

Овладение универсальными коммуникативными действиями:

задавать вопросы по существу обсуждаемой темы в ходе диалога и/или дискуссии, высказывать идеи, формулировать свои предложения относительно выполнения предложенной задачи;

выступать с презентацией результатов познавательной деятельности, полученных самостоятельно или совместно со сверстниками при выполнении химического эксперимента, практической работы по исследованию свойств изучаемых веществ, реализации учебного проекта и формулировать выводы по результатам проведённых исследований путём согласования позиций в ходе обсуждения и обмена мнениями.

Овладение универсальными регулятивными действиями:

самостоятельно планировать и осуществлять свою познавательную деятельность, определяя её цели и задачи, контролировать и по мере необходимости корректировать предлагаемый алгоритм действий при выполнении учебных и исследовательских задач, выбирать наиболее эффективный способ их решения с учётом получения новых знаний о веществах и химических реакциях;

осуществлять самоконтроль своей деятельности на основе самоанализа и самооценки.

ПРЕДМЕТНЫЕ РЕЗУЛЬТАТЫ

10 КЛАСС

Предметные результаты освоения курса «Органическая химия» отражают:

сформированность представлений о химической составляющей естественно-научной картины мира, роли химии в познании явлений

природы, в формировании мышления и культуры личности, её функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

системой знаний, владение химических которая включает: основополагающие понятия (химический элемент, атом, электронная оболочка атома, молекула, валентность, электроотрицательность, химическая связь, структурная формула (развёрнутая и сокращённая), моль, молярная масса, молярный объём, углеродный скелет, функциональная группа, радикал, изомерия, изомеры, гомологический ряд, гомологи, углеводороды, кислород и азотсодержащие соединения, мономер, полимер, структурное звено, высокомолекулярные соединения); теории и законы (теория строения органических веществ А. М. Бутлерова, закон сохранения массы веществ); закономерности, символический язык химии; мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших органических веществ в быту и практической деятельности человека;

сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании состава, строения и превращений органических соединений;

сформированность умений использовать химическую символику для составления молекулярных и структурных (развёрнутой, сокращённой) формул органических веществ и уравнений химических реакций, изготавливать модели молекул органических веществ для иллюстрации их химического и пространственного строения;

сформированность умений устанавливать принадлежность изученных органических веществ по их составу и строению к определённому классу/группе соединений (углеводороды, кислород и азотсодержащие соединения, высокомолекулярные соединения), давать им названия по систематической номенклатуре (IUPAC), а также приводить тривиальные названия отдельных органических веществ (этилен, пропилен, ацетилен, этиленгликоль, глицерин, фенол, формальдегид, ацетальдегид, муравьиная кислота, уксусная кислота, олеиновая кислота, стеариновая кислота, глюкоза, фруктоза, крахмал, целлюлоза, глицин);

сформированность умения определять виды химической связи в органических соединениях (одинарные и кратные);

сформированность умения применять положения теории строения органических веществ А. М. Бутлерова для объяснения зависимости свойств веществ от их состава и строения; закон сохранения массы веществ;

сформированность умений характеризовать состав, строение, физические и химические свойства типичных представителей различных классов органических веществ (метан, этан, этилен, пропилен, ацетилен, бутадиен-1,3, метилбутадиен-1,3, бензол, метанол, этанол, этиленгликоль, глицерин, фенол, ацетальдегид, муравьиная и уксусная кислоты, глюкоза, крахмал, целлюлоза, аминоуксусная кислота), иллюстрировать генетическую связь между ними уравнениями соответствующих химических реакций с использованием структурных формул;

сформированность умения характеризовать источники углеводородного сырья (нефть, природный газ, уголь), способы их переработки и практическое применение продуктов переработки;

сформированность умений проводить вычисления по химическим уравнениям (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции);

сформированность умений владеть системой знаний об основных методах научного познания, используемых в химии при изучении веществ и химических явлений (наблюдение, измерение, эксперимент, моделирование), использовать системные химические знания для принятия решений в конкретных жизненных ситуациях, связанных с веществами и их применением;

сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;

сформированность умений планировать и выполнять химический эксперимент (превращения органических веществ при нагревании, получение этилена и изучение его свойств, качественные реакции органических веществ, денатурация белков при нагревании, цветные реакции белков) в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием, представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;

сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой информации, Интернет и других);

сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определённых органических веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;

для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений;

для слепых и слабовидящих обучающихся: умение использовать рельефно-точечную систему обозначений Л. Брайля для записи химических формул.

11 КЛАСС

Предметные результаты освоения курса «Общая и неорганическая химия» отражают:

сформированность представлений: о химической составляющей естественно-научной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, её функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде;

владение системой химических знаний, которая включает: основополагающие понятия (химический элемент, атом, изотоп, s-, p-, dэлектронные орбитали атомов, ион, молекула, моль, молярный объём, валентность, электроотрицательность, степень окисления, химическая связь (ковалентная, ионная, металлическая, водородная), кристаллическая решётка, типы химических реакций, раствор, электролиты, неэлектролиты, электролитическая диссоциация, окислитель, восстановитель, химической реакции, химическое равновесие); теории и законы (теория электролитической диссоциации, периодический закон Д. И. Менделеева, закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях), закономерности, символический язык химии, мировоззренческие знания, лежащие в основе понимания причинности и системности химических явлений, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших неорганических веществ в быту и практической деятельности человека;

сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании неорганических веществ и их превращений;

сформированность умений использовать химическую символику для составления формул веществ и уравнений химических реакций, систематическую номенклатуру (IUPAC) и тривиальные названия отдельных неорганических веществ (угарный газ, углекислый газ, аммиак, гашёная известь, негашёная известь, питьевая сода, пирит и другие);

сформированность умений определять валентность и степень окисления химических элементов в соединениях различного состава, вид химической связи (ковалентная, ионная, металлическая, водородная) в соединениях, тип кристаллической решётки конкретного вещества (атомная, молекулярная, ионная, металлическая), характер среды в водных растворах неорганических соединений;

сформированность умений устанавливать принадлежность неорганических веществ по их составу к определённому классу/группе соединений (простые вещества — металлы и неметаллы, оксиды, основания, кислоты, амфотерные гидроксиды, соли);

сформированность умений раскрывать смысл периодического закона Д. И. Менделеева и демонстрировать его систематизирующую, объяснительную и прогностическую функции;

сформированность умений характеризовать электронное строение атомов химических элементов 1—4 периодов Периодической системы химических элементов Д. И. Менделеева, используя понятия «s-, p-, d-электронные орбитали», «энергетические уровни», объяснять закономерности изменения свойств химических элементов и их соединений по периодам и группам Периодической системы химических элементов Д. И. Менделеева;

сформированность умений характеризовать (описывать) общие химические свойства неорганических веществ различных классов, подтверждать существование генетической связи между неорганическими веществами с помощью уравнений соответствующих химических реакций;

сформированность умения классифицировать химические реакции по различным признакам (числу и составу реагирующих веществ, тепловому эффекту реакции, изменению степеней окисления элементов, обратимости реакции, участию катализатора);

сформированность умений составлять уравнения реакций различных типов, полные и сокращённые уравнения реакций ионного обмена, учитывая условия, при которых эти реакции идут до конца;

сформированность умений проводить реакции, подтверждающие качественный состав различных неорганических веществ, распознавать опытным путём ионы, присутствующие в водных растворах неорганических веществ;

сформированность умений раскрывать сущность окислительновосстановительных реакций посредством составления электронного баланса этих реакций;

сформированность умений объяснять зависимость скорости химической реакции от различных факторов; характер смещения химического равновесия в зависимости от внешнего воздействия (принцип Ле Шателье);

сформированность умений характеризовать химические процессы, лежащие в основе промышленного получения серной кислоты, аммиака, а также сформированность представлений об общих научных принципах и экологических проблемах химического производства;

сформированность умений проводить вычисления с использованием понятия «массовая доля вещества в растворе», объёмных отношений газов при химических реакциях, массы вещества или объёма газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ, теплового эффекта реакции на основе законов сохранения массы веществ, превращения и сохранения энергии;

сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов;

сформированность умений планировать и выполнять химический эксперимент (разложение пероксида водорода в присутствии катализатора, определение среды растворов веществ \mathbf{c} помощью универсального индикатора, влияние различных факторов на скорость химической реакции, реакции ионного обмена, качественные реакции на сульфат-, карбонат- и хлорид-анионы, на катион аммония, решение экспериментальных задач по темам «Металлы» и «Неметаллы») в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием, представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов;

сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой коммуникации, Интернет и других);

сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определённых веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека;

для обучающихся с ограниченными возможностями здоровья: умение применять знания об основных доступных методах познания веществ и химических явлений;

для слепых и слабовидящих обучающихся: умение использовать рельефно-точечную систему обозначений Л. Брайля для записи химических формул.

IV. ТЕМАТИЧЕСКОЕ ПЛАНИРОВАНИЕ 10 КЛАСС

	Наименование разделов и тем программы	Количество часов			Электронные		
№ п/п		Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы		
Раздел 1.	Раздел 1. Теоретические основы органической химии						
1.1	Предмет органической химии. Теория строения органических соединений А. М. Бутлерова	3					
Итого по	Итого по разделу						
Раздел 2.	Углеводороды		ı				
2.1	Предельные углеводороды — алканы	2					
2.2	Непредельные углеводороды: алкены, алкадиены, алкины	6		1			
2.3	Ароматические углеводороды	2					
2.4	Природные источники углеводородов и их переработка	3	1				
Итого по	Итого по разделу						
Раздел 3.	Раздел 3. Кислородсодержащие органические соединения						
3.1	Спирты. Фенол	3					
3.2	Альдегиды. Карбоновые кислоты. Сложные эфиры	7		1			
3.3	Углеводы	3	2				
Итого по разделу		13					

Раздел 4. Азотсодержащие органические соединения					
4.1	Амины. Аминокислоты. Белки	3			
Итого по разделу		3			
Раздел 5.	Высокомолекулярные соединения				
5.1	Пластмассы. Каучуки. Волокна	2			
Итого по разделу		2			
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		34	3	2	

11 КЛАСС

№ п/п	Наименование разделов и тем программы	Количество часов			Электронные	
		Всего	Контрольные работы	Практические работы	(цифровые) образовательные ресурсы	
Раздел 1. Теоретические основы химии						
1.1	Строение атомов. Периодический закон и Периодическая система химических элементов Д. И. Менделеева	3				
1.2	Строение вещества. Многообразие веществ	4				
1.3	Химические реакции	6	1	1		
Итого по	Итого по разделу					
Раздел 2	. Неорганическая химия			-		
2.1	Металлы	6		1		
2.2	Неметаллы	9	1	1		
2.3	Связь неорганических и органических веществ	2				
Итого по	Итого по разделу					
Раздел 3	. Химия и жизнь			,		
3.1	Химия и жизнь	4				
Итого по разделу		4				
ОБЩЕЕ КОЛИЧЕСТВО ЧАСОВ ПО ПРОГРАММЕ		34	2	3		

V. СИСТЕМА ОЦЕНКИ ДОСТИЖЕНИЯ ОБУЧАЮЩИМИСЯ ПЛАНИРУЕМЫХ РЕЗУЛЬТАТОВ ОСВОЕНИЯ ОБРАЗОВАТЕЛЬНЫХ ПРОГРАММ НА УРОВНЯХ ОСНОВНОГО ОБЩЕГО И СРЕДНЕГО ОБЩЕГО ОБРАЗОВАНИЯ УЧЕБНЫЙ ПРЕДМЕТ «ХИМИЯ»

На уроках химии оцениванию подлежат следующие специфические умения:

выделять существенные признаки основных химических понятий; использовать понятия для объяснения отдельных фактов и явлений;

выбирать основания и критерии для классификации веществ и химических реакций;

устанавливать причинно-следственные связи между объектами изучения;

применять в процессе познания широко используемые в химии символические (знаковые) модели (химический знак — символ элемента, химическая формула, уравнение химической реакции);

преобразовывать модельные представления при решении учебнопознавательных задач;

выявлять и характеризовать существенные признаки изучаемых веществ и химических реакций;

выполнять расчеты по химическим формулам и уравнениям химических реакций;

планировать и проводить химический эксперимент. Для организации текущего оценивания образовательных результатов на уроках химии могут применяться:

устный опрос с использованием системы специально подобранных устных вопросов;

письменный опрос на основе системы заданий различной типологии и уровня сложности для оценки усвоения отдельных элементов содержания конкретной темы, в том числе заданий, имеющих характер «мысленного эксперимента», которые требуют от обучающихся применения знаний в новом контексте или для решения нестандартных задач;

практических работ, позволяющих оценивать умения работы с химическими веществами и лабораторным оборудованием, применение теоретических знаний на практике.

В силу разнообразия форм и методов текущее оценивание учебных достижений обучающихся позволяет:

– осуществлять дифференцированный подход к обучающимся с целью выявления их способности к применению знаний в различных ситуациях, готовности к самоконтролю и самооценке результатов своих достижений;

- выявлять причины затруднений обучающихся при работе с учебным материалом;
- следить за ходом процесса обучения и по мере необходимости оперативно корректировать формы его организации, особенно в части самостоятельной познавательной деятельности обучающихся.

Тематическое оценивание предметных результатов по химии направлено на комплексную оценку знаний и умений обучающихся после завершения изучения определенной темы или раздела учебной программы. Оно помогает учителю определить уровень усвоения материала и готовность обучающихся к дальнейшему изучению предмета, а также скорректировать образовательный процесс для достижения лучших результатов.

Оценивание устных ответов

Одной из традиционных форм проверки знаний и умений обучающихся является устный опрос. К методам устного контроля относятся: беседа, рассказ ученика, объяснение, комментирование текста учебника, чтение схемы, сообщение. Устный опрос используется в ходе различных типов уроков, чаще в начале урока с целью актуализации знаний, необходимых для изучения нового теоретического материала, а также в конце урока для первичного контроля и закрепления полученных на уроке знаний. В качестве основного инструментария устного опроса выступает система вопросов, построенных на основе конкретных элементов содержания изученного материала, либо нового материала, подлежащего закреплению. Содержание вопросов учитель определяет с учетом подготовленности обучающихся на момент изучения соответствующего материала.

При оценивании устного ответа обучающегося на поставленный вопрос целесообразно применять следующие критерии:

Отметка «5» ставится при условии, если обучающийся:

- дает полный аргументированный ответ, изложенный в определенной логической последовательности;
- демонстрирует понимание сущности соответствующих химических понятий, законов и теорий, использует их во взаимосвязи для объяснения рассматриваемых явлений и свойств изучаемых веществ;
- успешно реализует полученные ранее знания для построения выводов и обобщений.

Отметка «4» ставится при условии, если обучающийся:

- дает ответ, допускающий некоторые неточности в толковании сущности фактов и явлений, о которых идет речь;
 - самостоятельно устраняет имеющиеся в ответе неточности.

Отметка «3» ставится при условии, если обучающийся:

- дает ответ, который по содержанию в большей части удовлетворяет требованиям к ответу на отметку «4», но допускает ошибки при использовании теоретического и фактологического материала;
- не демонстрирует умения по установлению связи между изученным ранее и новым теоретическим материалом;
 - затрудняется в построении выводов и обобщений;
 - допущенные ошибки исправляет с помощью учителя.

Отметка «2» ставится при условии, если обучающийся:

- дает неверный ответ;
- показывает отсутствие и закономерностей знаний соответствующих понятий;
- неверно применяет изученные понятия, законы и теории для объяснения рассматриваемых явлений и свойств изучаемых веществ;
- затрудняется в исправлении допущенных ошибок как самостоятельно, так и с помощью учителя.

Оценивание письменных работ

В практике преподавания химии в рамках текущего и тематического контроля знаний используются различные письменные задания. При всем разнообразии письменные задания сходны по своей целевой направленности, суть которой заключается в том, чтобы не просто установить, что знают и умеют обучающиеся, сколько обеспечить объективную оценку того, как и в каких взаимосвязях они могут применять полученные знания и умения для анализа, объяснения и прогнозирования различного рода явлений.

Охарактеризуем особенности оценивания некоторых видов заданий, которые традиционно используются для проведения оценочных процедур в рамках текущего и тематического контроля знаний.

Химический диктант.

Химический диктант состоит из перечня вопросов, проверяющих знания на репродуктивном уровне, требующих быстрых и кратких ответов. Например: знание символов химических элементов, формул и названий веществ, терминологии и пр.

При оценивании химического диктанта целесообразно применять следующие критерии:

отметка «5» ставится при условии, если обучающийся верно записывает от 95 до 100% ответов;

отметка «4» ставится при условии, если обучающийся верно записывает от 80 до 94% ответов;

отметка «**3**» ставится при условии, если обучающийся верно записывает от 60 до 79% ответов;

отметка «2» ставится при условии, если обучающийся записывает менее 60% ответов.

Тестирование. Можно выделить основные виды тестовых заданий, которые используются для проверки знаний и умений обучающихся по различным темам: с выбором ответа/ответов (предлагается выбрать правильные ответ/ответы из предложенных вариантов);

с коротким ответом (требуется дать краткий ответ на вопрос или выполнить задание в нескольких предложениях);

на соответствие (нужно установить соответствие между элементами двух множеств);

на последовательность (требуется расставить элементы в правильной последовательности).

Целесообразно применить нормативное дихотомическое оценивание результатов выполнения каждого тестового задания, направленного на проверку усвоения одного элемента содержания. Примерная шкала перевода балла в отметку (разрабатывается в образовательной организации):

отметка «5» ставится при условии, если обучающийся набрал от 85 до 100% от общего числа баллов;

отметка «**4**» ставится при условии, если обучающийся набрал от 65 до 84% от общего числа баллов;

отметка «**3**» ставится при условии, если обучающийся набрал от 50 до 64% от общего числа баллов;

отметка «2» ставится при условии, если обучающийся набрал менее 50% от общего числа баллов.

Оценивание решения расчетных задач.

Расчетные задачи по химии в системе оценивания играют важную роль в оценке уровня понимания и усвоения материала обучающимися. Они позволяют проверить не только знание теоретических основ химии, но и умение применять их на практике, проводить расчеты, анализировать результаты и делать выводы. Расчетные задачи могут включать в себя решение уравнений химических реакций, расчет массы, объема, концентрации веществ, а также определение других химических параметров.

Расчетные задачи помогают развивать логическое мышление, умение работать с данными и применять теоретические знания на практике.

При оценивании письменных решений расчетных задач рекомендуется по возможности на всех этапах использовать обобщенные критерии оценивания таких заданий в КИМ ОГЭ (на уровне основного общего образования) и КИМ ЕГЭ (на уровне среднего общего образования) по химии.

Решение расчетной задачи предполагает выполнение определенной последовательности логических действий с физическими величинами на основании соотношений веществ — участников реакции. В зависимости от условия задачи количество таких логических действий может быть различным. Поэтому при оценивании важно учитывать то, как обучающийся выстраивает нужную последовательность этих действий, и оценивать каждое из выполненных действий, которое будет являться элементом ответа.

Объектом оценивания решения расчетных задач являются:

- 1) предметный результат сформированность умения проводить расчеты по уравнению химической реакции;
- 2) метапредметные результаты сформированность умений строить логические рассуждения, самостоятельно выбирать способ решения учебной задачи.

Логические действия, которые являются необходимыми для решения расчетной химической задачи по уравнению химической реакции:

- 1) составление уравнения химической реакции, о которой идет речь в условии задачи;
- 2) определение соотношения количества веществ пропорциональной зависимости, которая устанавливается в соответствии с коэффициентами в уравнении реакции;
 - 3) нахождение искомой физической величины.

Каждое логическое действие оценивается в 1 балл, суммарный балл за верное решение задачи — 3 балла. Такой принцип критериального оценивания целесообразен на первых этапах формирования умения решать расчетные задачи. В процессе изучения учебного предмета «Химия» используются задания, условие которых дополняется новыми элементами знаний, что приводит к увеличению количества учебных действий, необходимых для решения расчетной задачи. При этом сходные по своему характеру учебные действия, например нахождение массы (объема) веществ по известному количеству вещества (и наоборот), могут повторяться применительно к нескольким веществам. В этом случае такие действия целесообразно оценивать в 1 балл.

К критериям оценивания решения расчетной химической задачи могут быть отнесены следующие показатели мыслительной деятельности:

- 1) понимание химической сущности процесса (составление уравнения химической реакции);
- 2) установление пропорциональной зависимости (соотношения) между количеством вещества участников процесса во взаимосвязи;
- 3) применение соответствующих способов вычисления заданной физической величины

Рекомендуется применять поэлементное оценивание решения расчетных химических задач:

```
верно записаны три элемента ответа -3 балла; верно записаны два элемента ответа -2 балла; верно записан один элемент ответа -1 балл; все элементы ответа записаны неверно -0 баллов.
```

Для определения уровня сформированности у обучающихся умений решать расчетные химические задачи при изучении каждой темы рекомендуется проводить кратковременные письменные работы, задания которой включают расчетные задачи разного уровня сложности.

Кратковременная проверочная работа.

По мере изучения любой темы курса химии происходит «накопление» знаний, а также умений применять их в различных учебных ситуациях. В целях оценки умений применять полученные знания в системе и взаимосвязи целесообразно использовать кратковременные (10–15 минут) проверочные работы, включающие небольшое количество заданий разных типов и уровня сложности. Кратковременные проверочные работы позволяют оценить сформированность нескольких взаимосвязанных понятий в процессе изучения отдельных подтем/блоков. Кратковременные проверочные работы могут содержать задания, требующие составления уравнений химических реакций (например, задания на характеристику свойств изучаемых веществ, генетическую связь между веществами различных классов), а также расчетные химические задачи и другие типы заданий. Количество заданий в работе зависит от типа и сложности включенных заданий и от времени, отводимого на их выполнение.

Примерная шкала перевода балла в отметку (разрабатывается в образовательной организации):

отметка «5» ставится при условии, если обучающийся набрал от 85 до 100% от общего числа баллов;

отметка «**4**» ставится при условии, если обучающийся набрал от 65 до 84% от общего числа баллов;

отметка «**3**» ставится при условии, если обучающийся набрал от 50 до 64% от общего числа баллов;

отметка «2» ставится при условии, если обучающийся набрал менее 50% от общего числа баллов.

Тематическая контрольная работа.

Формой оценивания учебных достижений в рамках изучения темы или раздела курса химии является контрольная работа. При организации и дальнейшем оценивании контрольных работ по химии сначала определяются подходы к построению контрольной работы, а затем к отбору критериев как отдельных заданий, так всей работы оценивания в целом. Задания контрольной работы ориентированы на проверку основополагающих элементов содержания курса химии и сформированности предметных и метапредметных умений обучающихся. Контрольную работу следует использовать по завершении изучения темы целиком, а не отдельных подтем/блоков, изучаемых на уроках. Для контрольной работы отбирается самый значимый материал темы. По своей типологии задания контрольной аналогичны заданиям, которые работы используются при изучении конкретных тем.

Рекомендуем следующие критерии для перевода общей суммы начисленных баллов в отметку по пятибалльной шкале:

отметка «5» ставится при условии, если обучающийся набрал от 85 до 100% от общего числа баллов;

отметка «4» ставится при условии, если обучающийся набрал от 65 до 84% от общего числа баллов;

отметка «**3**» ставится при условии, если обучающийся набрал от 50 до 64% от общего числа баллов;

отметка «2» ставится при условии, если обучающийся набрал менее 50% от общего числа баллов.

Оценка практической работы

Выполнение практических работ предполагает комплексную оценку образовательных достижений обучающихся с учетом взаимосвязи отдельных показателей.

Контролируемыми результатами выполняемых действий являются знаниевый и деятельностный компоненты, которые представлены в таблице. Контролируемые результаты выполняемых действий, их оценивание

Оценка Деятельностный Оценка					
Знаниевый компонент	(баллы)	компонент	(баллы)		
1) Знание лабораторных способов получения конкретных веществ; знание физических и химических свойств веществ, которые следует учитывать при выборе необходимого способа их собирания	1	1) Соблюдение правил безопасной работы при выполнении химических опытов	1		
2) Знание физических и химических свойств веществ, которые следует учитывать при выборе необходимого способа их собирания (методами вытеснения воздуха и воды) и для доказательства наличия полученных веществ	1	2) Соблюдение правил работы с лабораторным оборудованием при монтаже приборов	1		
3) Знание условий протекания химических процессов, используемых для получения и исследования свойств заданных веществ	1	3) Грамотное обеспечение условий для проведения химических процессов (нагревание реакционной смеси; измельчение твердых веществ; растворение веществ в воде и т. д.)	1		
4) Использование химической символики для составления формул веществ и уравнений осуществляемых химических реакций	1	4) Осуществление наблюдений за ходом процесса, фиксирование и описание его результатов	1		
5) Формулирование выводов и обобщений по результатам проведенных исследований	1	5) Составление отчета о проделанной работе	1		
Максимальный итоговый балл: 10					
Отметка по пятибалльной шкале: «5» — 9—10 баллов «4» — 7—8 баллов 3» — 5—6 баллов «2» — менее 5 баллов					

Оценивание проектной и исследовательской деятельности

Проектная и исследовательская деятельность формирует у обучающихся способность действовать самостоятельно, инициативно и ответственно, используя предметные знания в качестве инструмента для решения проблемы.

Учебная проектная и исследовательская деятельность должна завершаться материальным продуктом: макетом, моделью, отчетными

материалами (в случае проекта), письменным отчетом (рефератом, аналитическими материалами, стендовым докладом и др.).

Обязательным условием проектной и исследовательской деятельности является ведение дневника, в котором отражаются все этапы работы, задачи для каждого этапа и прослеживается алгоритм работы над проектом или исследованием. Ход эксперимента и его результаты фиксируются в протоколе.

Для оценки результатов проекта или исследования необходимо использовать заранее разработанные оценочные листы с возможностью учета степени самостоятельности, участия работы в группе, соответствия выбранных методов, целеполагания, формулирования проблемы и задачи работы, работы с источниками информации и пр.

Итоговая оценка по проекту и исследованию должна складываться из суммы баллов за каждый этап работы.

Параметры оценивания проектно-исследовательских работ

№	Содержание	Критерии оценивания	Всего баллов
1	Выбор темы и работа обучающегося	(0–10)	
1.1	Актуальность темы	0 – не обозначена; 1 – обоснована	0–1
1.2	Постановка проблемы/гипотезы	0 – не обозначена; 1 – гипотеза четко обозначена	0–1
1.3	Целеполагание	0 — не обозначено или цель не соответствует гипотезе; 1 — цели обозначены, соответствуют гипотезе; 2 — цели обозначены, соответствуют гипотезе, задачи поставлены, соответствуют цели	0–2
1.4	Методы	0 – нет; 1 – названо, но нет подробного описания; 2 – описано подробно, детально	0–2
1.5	Выполнение работы. Результаты. Выводы	0 – нет; 1 – результаты приведены, но не показано, как получены; 2 – описано, как выполнена работа, четко выделены результаты, сделаны выводы	0–2
1.6	Синопсис	1 – самостоятельность; 1 – четкость структуры	0–2
2	Защита	(0–10)	
2.1	Грамотность и четкость выступления	1 — грамотность и структурированность выступления; 2 — последовательность, четкость;	0–5

		3 — содержательность, все основное изложено, суть работы четко выделена	
2.2	Использование презентаций, демонстраций	0 — не использовались; 1 — были, но обучающийся не использовал или использовал неумело; 2 — грамотное и уместное использование; презентации и/или демонстрации грамотные, наглядные	0–2
2.3	Ответы на вопросы	0 — не смог ответить ни на один вопрос по теме работы; 1 — ответы неуверенные, содержат ошибки, но в целом удовлетворительно; 2 — ответы на 2—3 вопроса по теме правильные, уверенные	0–2
2.4	Самоорганизация	0 – нарушен регламент; 1 – регламент соблюдался	0–1

Рекомендуем следующие критерии для перевода общей суммы начисленных баллов в отметку по пятибалльной шкале:

отметка «5» ставится при условии, если обучающийся набрал от 85 до 100% от общего числа баллов;

отметка «**4**» ставится при условии, если обучающийся набрал от 65 до 84% от общего числа баллов;

отметка «**3**» ставится при условии, если обучающийся набрал от 50 до 64% от общего числа баллов;

отметка «2» ставится при условии, если обучающийся набрал менее 50% от общего числа баллов.

На основании приведенных рекомендаций в образовательной организации могут быть разработаны и приняты свои критерии оценивания проектной и исследовательской деятельности обучающихся с учетом особенностей основной образовательной программы, реализуемой в данной образовательной организации.

VI.ПРОВЕРЯЕМЫЕ ТРЕБОВАНИЯ К РЕЗУЛЬТАТАМ ОСВОЕНИЯ ОСНОВНОЙ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Код проверяемого результата	Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования
1	Теоретические основы органической химии
1.1	Сформированность представлений о химической составляющей естественнонаучной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, её функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде
1.2	Владение системой химических знаний, которая включает: основополагающие понятия (молекула, валентность, электроотрицательность, степень окисления, химическая связь, моль, молярная масса, молярный объём, углеродный скелет, функциональная группа, радикал, изомерия, изомеры, гомологический ряд, гомологи, углеводороды, кислород- и азотсодержащие соединения, биологически активные вещества (углеводы, жиры, белки), мономер, полимер, структурное звено, высокомолекулярные соединения); теории и законы (теория химического строения органических веществ А.М. Бутлерова), закономерности, символический язык химии, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших неорганических и органических веществ в быту и практической деятельности человека
1.3	Сформированность умений выявлять характерные признаки понятий, устанавливать их взаимосвязь, использовать соответствующие понятия при описании состава, строения и превращений органических соединений
1.4	сформированность умений использовать химическую символику для составления молекулярных и структурных (развёрнутой, сокращённой) формул органических веществ и уравнений химических реакций, изготавливать модели молекул органических веществ для иллюстрации их химического и пространственного строения

1.5	Сформированность умений устанавливать принадлежность изученных органических веществ по их составу и строению к определённому классу (группе) соединений (углеводороды, кислород и азотсодержащие соединения, высокомолекулярные соединения), давать им названия по систематической номенклатуре (IUPAC)
1.5	Сформированность умения определять виды химической связи в органических соединениях (одинарные и кратные)
1.6	Сформированность умения применять: положения теории строения органических веществ А.М. Бутлерова для объяснения зависимости свойств веществ от их состава и строения; закон сохранения массы веществ
2	Углеводороды. Кислородсодержащие и азотсодержащие органические соединения. Высокомолекулярные соединения
2.1	Сформированность умений приводить тривиальные названия отдельных органических веществ (этилен, пропилен, ацетилен, этиленгликоль, глицерин, фенол, формальдегид, ацетальдегид, муравьиная кислота, уксусная кислота, олеиновая кислота, стеариновая кислота, глюкоза, фруктоза, крахмал, целлюлоза, глицин)
2.2	Сформированность умений характеризовать состав, строение, физические и химические свойства типичных представителей различных классов органических веществ (метан, этан, этилен, пропилен, ацетилен, бутадиен-1,3, метилбутадиен-1,3, бензол, метанол, этанол, этиленгликоль, глицерин, фенол, ацетальдегид, муравьиная и уксусная кислоты, глюкоза, крахмал, целлюлоза, аминоуксусная кислота)
2.3	Сформированность умения иллюстрировать генетическую связь между типичными представителями различных классов органических веществ уравнениями соответствующих химических реакций с использованием структурных формул
2.4	Сформированность умения характеризовать источники углеводородного сырья (нефть, природный газ, уголь), способы их переработки и практическое применение продуктов переработки
3	Химия и жизнь. Расчёты
3.1	Сформированность умений владеть системой знаний об основных методах научного познания, используемых в химии при изучении

3.2	веществ и химических явлений (наблюдение, измерение, эксперимент, моделирование), использовать системные химические знания для принятия решений в конкретных жизненных ситуациях, связанных с веществами и их применением Сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также
3.2	правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов
3.3	Сформированность умений планировать и выполнять химический эксперимент (превращения органических веществ при нагревании, получение этилена и изучение его свойств, качественные реакции органических веществ, денатурация белков при нагревании, цветные реакции белков) в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием; представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов
3.4	Сформированность умений проводить вычисления по химическим уравнениям (массы, объёма, количества исходного вещества или продукта реакции по известным массе, объёму, количеству одного из исходных веществ или продуктов реакции)
3.5	Сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой информации, сеть Интернет и другие)
3.6	Сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды, осознавать опасность воздействия на живые организмы определённых органических веществ, понимая смысл показателя ПДК (предельно допустимой концентрации), пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека

Код проверяемого результата	Проверяемые предметные результаты освоения основной образовательной программы среднего общего образования
1	Теоретические основы химии
1.1	Владение системой химических знаний, которая включает: основополагающие понятия (химический элемент, атом, электронная оболочка атома, <i>s</i> -, <i>p</i> -, <i>d</i> -электронные орбитали атомов, ион, молекула, валентность, электроотрицательность, степень окисления, химическая связь, моль, молярная масса, молярный объём, кристаллическая решётка, типы химических реакций (окислительно-восстановительные, экзо- и эндотермические, реакции ионного обмена), раствор, электролиты, неэлектролиты, электролитическая диссоциация, окислитель, восстановитель, скорость химической реакции, химическое равновесие); теории и законы (теория электролитической диссоциации, Периодический закон Д.И. Менделеева, закон сохранения массы), закономерности, символический язык химии, фактологические сведения о свойствах, составе, получении и безопасном использовании важнейших неорганических веществ в быту и практической деятельности человека
1.2	Сформированность умений выявлять характерные признаки и взаимосвязь изученных понятий, применять соответствующие понятия при описании строения и свойств неорганических веществ и их превращений; выявлять взаимосвязь химических знаний с понятиями и представлениями других естественнонаучных предметов
1.3	Владение основными методами научного познания веществ и химических явлений (наблюдение, измерение, эксперимент, моделирование)
1.4	Сформированность умений определять валентность и степень окисления химических элементов в соединениях различного состава, вид химической связи (ковалентная, ионная, металлическая, водородная) в соединениях, тип кристаллической решётки конкретного вещества (атомная, молекулярная, ионная, металлическая)
1.5	Сформированность умений определять характер среды в водных

	растворах неорганических соединений
1.6	Сформированность умения классифицировать химические реакции по различным признакам (числу и составу реагирующих веществ, тепловому эффекту реакции, изменению степеней окисления элементов, обратимости реакции, участию катализатора)
1.7	Сформированность умений составлять уравнения реакций различных типов, полные и сокращённые уравнения реакций ионного обмена, учитывая условия, при которых эти реакции идут до конца
1.8	Сформированность умений проводить реакции, подтверждающие качественный состав различных неорганических веществ, распознавать опытным путём ионы, присутствующие в водных растворах неорганических веществ
1.9	Сформированность умений раскрывать сущность окислительновосстановительных реакций посредством составления электронного баланса этих реакций
1.10	Сформированность умений объяснять зависимость скорости химической реакции от различных факторов
1.11	Сформированность умений объяснять характер смещения химического равновесия в зависимости от внешнего воздействия (принцип Ле Шателье)
2	Общая и неорганическая химия
2.1	Сформированность умений раскрывать смысл Периодического закона Д.И. Менделеева и демонстрировать его систематизирующую, объяснительную и прогностическую функции
2.2	Сформированность умений характеризовать электронное строение атомов химических элементов 1 —4 периодов Периодической системы химических элементов Д.И. Менделеева, используя понятия « s -, p -, d -электронные орбитали», «энергетические уровни», объяснять закономерности изменения свойств химических элементов и их соединений по периодам и группам Периодической системы химических элементов Д.И. Менделеева
2.3	Сформированность умений характеризовать (описывать) общие химические свойства неорганических веществ различных классов, подтверждать существование генетической связи между

	неорганическими веществами с помощью уравнений
	соответствующих химических реакций
2.4	Сформированность умений устанавливать принадлежность неорганических веществ по их составу к определённому классу (группе) соединений (простые вещества — металлы и неметаллы, оксиды, основания, кислоты, амфотерные гидроксиды, соли)
2.5	Сформированность умений использовать химическую символику для составления формул веществ и уравнений химических реакций, систематическую номенклатуру (IUPAC) и тривиальные названия отдельных неорганических веществ (угарный газ, углекислый газ, аммиак, гашёная известь, негашёная известь, питьевая сода, пирит и другие)
2.6	Сформированность умений характеризовать (описывать) общие химические свойства неорганических веществ различных классов, подтверждать существование генетической связи между неорганическими веществами с помощью уравнений соответствующих химических реакций
2.7	Сформированность умений планировать и выполнять химический эксперимент (разложение пероксида водорода в присутствии катализатора, определение среды растворов веществ с помощью универсального индикатора, влияние различных факторов на скорость химической реакции, реакции ионного обмена, качественные реакции на сульфат-, карбонат- и хлорид-анионы, на катион аммония, решение экспериментальных задач по темам «Металлы» и «Неметаллы») в соответствии с правилами техники безопасности при обращении с веществами и лабораторным оборудованием; представлять результаты химического эксперимента в форме записи уравнений соответствующих реакций и формулировать выводы на основе этих результатов
2.8	Сформированность умений соблюдать правила пользования химической посудой и лабораторным оборудованием, а также правила обращения с веществами в соответствии с инструкциями по выполнению лабораторных химических опытов
2.9	Сформированность умений характеризовать химические процессы, лежащие в основе промышленного получения серной кислоты, аммиака, а также сформированность представлений об общих научных принципах и экологических проблемах химического производства

3	Химия и жизнь. Расчёты
3.1	Сформированность представлений о химической составляющей естественнонаучной картины мира, роли химии в познании явлений природы, в формировании мышления и культуры личности, её функциональной грамотности, необходимой для решения практических задач и экологически обоснованного отношения к своему здоровью и природной среде
3.2	Сформированность умений критически анализировать химическую информацию, получаемую из разных источников (средства массовой коммуникации, сеть Интернет и другие)
3.3	Сформированность умений соблюдать правила экологически целесообразного поведения в быту и трудовой деятельности в целях сохранения своего здоровья и окружающей природной среды
3.4	Осознавать опасность воздействия на живые организмы определённых веществ, понимая смысл показателя ПДК, пояснять на примерах способы уменьшения и предотвращения их вредного воздействия на организм человека
3.5	Сформированность умений проводить вычисления с использованием понятия «массовая доля вещества в растворе», объёмных отношений газов при химических реакциях, массы вещества или объёма газов по известному количеству вещества, массе или объёму одного из участвующих в реакции веществ, теплового эффекта реакции на основе законов сохранения массы веществ, превращения и сохранения энергии

VII. ПРОВЕРЯЕМЫЕ ЭЛЕМЕНТЫ СОДЕРЖАНИЯ

Код	Проверяемый элемент содержания
1	Теоретические основы органической химии
1.1	Предмет органической химии: её возникновение, развитие и значение в получении новых веществ и материалов. Теория строения органических соединений А.М. Бутлерова, её основные положения
1.2	Структурные формулы органических веществ. Гомология, изомерия. Химическая связь в органических соединениях – одинарные и кратные связи. Представление о классификации органических веществ
1.3	Номенклатура органических соединений (систематическая) и тривиальные названия важнейших представителей классов органических веществ
2	Углеводороды
2.1	Алканы: состав и строение, гомологический ряд. Метан и этан – простейшие представители алканов: физические и химические свойства (реакции замещения и горения), нахождение в природе, получение и применение
2.2	Алкены: состав и строение, гомологический ряд. Этилен и пропилен – простейшие представители алкенов: физические и химические свойства (реакции гидрирования, галогенирования, гидратации, окисления и полимеризации), получение и применение
2.3	Алкадиены: бутадиен-1,3 и метилбутадиен-1,3: строение, важнейшие химические свойства (реакция полимеризации). Получение синтетического каучука и резины
2.4	Алкины: состав и особенности строения, гомологический ряд. Ацетилен — простейший представитель алкинов: состав, строение, физические и химические свойства (реакции гидрирования, галогенирования, гидратации, горения), получение и применение
2.5	Арены. Бензол: состав, строение, физические и химические свойства (реакции галогенирования и нитрования), получение и применение. Толуол: состав, строение, физические и химические свойства (реакции галогенирования и нитрования), получение и применение. Токсичность аренов. Генетическая связь между углеводородами, принадлежащими к различным классам
2.6	Природные источники углеводородов. Природный газ и попутные нефтяные газы. Нефть и её происхождение. Способы переработки нефти: перегонка, крекинг (термический, каталитический), пиролиз. Продукты переработки нефти, их применение в промышленности и в быту. Каменный уголь и

	продукты его переработки
3	Кислородсодержащие органические соединения
3.1	Предельные одноатомные спирты. Метанол и этанол: строение, физические и химические свойства (реакции с активными металлами, галогеноводородами, горение), применение. Водородные связи между молекулами спиртов. Действие метанола и этанола на организм человека. Многоатомные спирты. Этиленгликоль и глицерин: строение, физические и химические свойства (взаимодействие со щелочными металлами, качественная реакция на многоатомные спирты). Действие на организм человека. Применение глицерина и этиленгликоля
3.2	Фенол: строение молекулы, физические и химические свойства. Токсичность фенола. Применение фенола
3.3	Альдегиды и кетоны. Формальдегид, ацетальдегид: строение, физические и химические свойства (реакции окисления и восстановления, качественные реакции), получение и применение
3.4	Одноосновные предельные карбоновые кислоты. Муравьиная и уксусная кислоты: строение, физические и химические свойства (свойства, общие для класса кислот, реакция этерификации), получение и применение. Стеариновая и олеиновая кислоты как представители высших карбоновых кислот. Мыла как соли высших карбоновых кислот, их моющее действие
3.5	Сложные эфиры как производные карбоновых кислот. Гидролиз сложных эфиров. Жиры. Гидролиз жиров. Применение жиров. Биологическая роль жиров
3.6	Углеводы: состав, классификация углеводов (моно-, ди- и полисахариды). Глюкоза — простейший моносахарид: особенности строения молекулы, физические и химические свойства (взаимодействие с гидроксидом меди(II), окисление аммиачным раствором оксида серебра(I), восстановление, брожение глюкозы), нахождение в природе, применение, биологическая роль. Фотосинтез. Фруктоза как изомер глюкозы. Крахмал и целлюлоза как природные полимеры. Строение крахмала и целлюлозы. Физические и химические свойства крахмала (гидролиз, качественная реакция с иодом)
4	Азотсодержащие органические соединения
4.1	Аминокислоты как амфотерные органические соединения. Физические и химические свойства аминокислот (на примере глицина). Биологическое значение аминокислот. Пептиды
4.2	Белки как природные высокомолекулярные соединения. Первичная, вторичная и третичная структура белков. Химические свойства белков:

	гидролиз, денатурация, качественные реакции на белки
5	Высокомолекулярные соединения
5.1	Основные понятия химии высокомолекулярных соединений: мономер, полимер, структурное звено, степень полимеризации, средняя молекулярная масса. Основные методы синтеза высокомолекулярных соединений – полимеризация и поликонденсация
5.2	Экспериментальные методы изучения веществ и их превращений: ознакомление с образцами природных и искусственных волокон, пластмасс, каучуков. Получение синтетического каучука и резины

Код	Проверяемый элемент содержания
1	Теоретические основы химии
1.1	Химический элемент. Атом. Ядро атома, изотопы. Электронная оболочка. Энергетические уровни, подуровни. Атомные орбитали, <i>s</i> -, <i>p</i> -, <i>d</i> -элементы. Особенности распределения электронов по орбиталям в атомах элементов первых четырёх периодов. Электронная конфигурация атомов
1.2	Периодический закон и Периодическая система химических элементов Д.И. Менделеева. Связь периодического закона и Периодической системы химических элементов Д.И. Менделеева с современной теорией строения атомов. Закономерности изменения свойств химических элементов и образуемых ими простых и сложных веществ по группам и периодам. Значение периодического закона в развитии науки
1.3	Строение вещества. Химическая связь. Виды химической связи (ковалентная неполярная и полярная, ионная, металлическая). Ионы: катионы и анионы. Механизмы образования ковалентной химической связи (обменный и донорно-акцепторный). Водородная связь
1.4	Валентность. Электроотрицательность. Степень окисления
1.5	Вещества молекулярного и немолекулярного строения. Закон постоянства состава вещества. Типы кристаллических решёток. Зависимость свойства веществ от типа кристаллической решётки. Понятие о дисперсных системах. Истинные и коллоидные растворы. Массовая доля вещества в растворе
1.6	Классификация неорганических соединений. Номенклатура неорганических веществ
1.7	Химическая реакция. Классификация химических реакций в неорганической и органической химии. Закон сохранения массы веществ, закон сохранения и превращения энергии при химических реакциях

1.8	Скорость реакции, её зависимость от различных факторов
1.9	Обратимые реакции. Химическое равновесие. Факторы, влияющие на состояние химического равновесия. Принцип Ле Шателье
1.10	Электролитическая диссоциация. Сильные и слабые электролиты. Среда водных растворов веществ: кислая, нейтральная, щелочная. Реакции ионного обмена
1.11	Окислительно-восстановительные реакции
2	Неорганическая химия
2.1	Неметаллы. Положение неметаллов в Периодической системе химических элементов Д.И. Менделеева и особенности строения атомов. Физические свойства неметаллов. Аллотропия неметаллов (на примере кислорода, серы, фосфора и углерода)
2.2	Химические свойства важнейших неметаллов (галогенов, серы, азота, фосфора, углерода и кремния) и их соединений (оксидов, кислородсодержащих кислот, водородных соединений). Применение важнейших неметаллов и их соединений
2.3	Металлы. Положение металлов в Периодической системе химических элементов Д.И. Менделеева. Особенности строения электронных оболочек атомов металлов. Общие физические свойства металлов. Сплавы металлов. Электрохимический ряд напряжений металлов
2.4	Химические свойства важнейших металлов (натрий, калий, кальций, магний, алюминий, цинк, хром, железо, медь) и их соединений. Общие способы получения металлов. Применение металлов в быту и технике
2.5	Генетическая связь неорганических веществ, принадлежащих к различным классам
3	Химия и жизнь
3.1	Роль химии в обеспечении экологической, энергетической и пищевой безопасности, развитии медицины. Понятие о научных методах познания веществ и химических реакций
3.2	Представления об общих научных принципах промышленного получения важнейших веществ. Человек в мире веществ и материалов: важнейшие строительные материалы, конструкционные материалы, краски, стекло, керамика, материалы для электроники, наноматериалы, органические и минеральные удобрения
3.3	Химия и здоровье человека: правила использования лекарственных препаратов, правила безопасного использования препаратов бытовой химии в повседневной жизни

VIII. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ОБРАЗОВАТЕЛЬНОГО ПРОЦЕССА ОБЯЗАТЕЛЬНЫЕ УЧЕБНЫЕ МАТЕРИАЛЫ ДЛЯ УЧЕНИКА

• Химия. 10 класс. Габриелян О.С., Остроумов И.Г., Сладков С.А.

Акционерное общество «Издательство «Просвещение»

• Химия. 11 класс. Габриелян О.С., Остроумов И.Г., Сладков С.А.

Акционерное общество «Издательство «Просвещение»

МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ УЧИТЕЛЯ

 $\frac{\text{https://prosv.ru/search/?search=\%D1\%85\%D0\%B8\%D0\%BC\%D0\%B8\%D1\%8F+\%D0\%B3\%D0\%}{B0\%D0\%B1\%D1\%80\%D0\%B8\%D0\%B5\%D0\%BB\%D1\%8F\%D0\%BD\&isAutocorrectQuery=tru}{\underline{e}}$

"Просвещение" Корпорация Российский учебник

ЦИФРОВЫЕ ОБРАЗОВАТЕЛЬНЫЕ РЕСУРСЫ И РЕСУРСЫ СЕТИ ИНТЕРНЕТ

- 1. ЦОР ЯКласс https://www.yaklass.ru/
- 2. Российская электронная школа https://resh.edu.ru/
- 3. LECTA это цифровая платформа для современной школы https://lecta.ru
- 4. Образовательный портал Решу ЕГЭ https://ege.sdamgia.ru/
- 5. Образовательный портал Решу ВПР https://vpr.sdamgia.ru/
- 6. Турнир М.В. Ломоносова https://turlom.olimpiada.ru/news/436
- 7. Всероссийская олимпиада школьников. https://vos.olimpiada.ru/

ДОКУМЕНТ ПОДПИСАН ЭЛЕКТРОННОЙ ПОДПИСЬЮ

СВЕДЕНИЯ О СЕРТИФИКАТЕ ЭП

Сертификат 133397933100110045794213742499444592196809849358

Владелец Балтабаев Иван Маратович

Действителен С 27.08.2025 по 27.08.2026